Profit Sharing: A Contracting Solution to Harness the Wisdom of the Crowd
 Jiasun Li
 George Mason University

Alice and Bob (deep pocketed; identically risk averse) participate in funding a risky, scalable project

- independently decide how much money to give - based on optimal return-risk trade-off

Both investors use private information (containing idiosyncratic noises) to guide investment decisions

- neither has access to the other's private information

Q: How should they divide up any payoff from their investment?

If Alice and Bob find it optimal to invest $\$ 200$ and $\$ 100$, respectively, under no profit sharing (i.e. common stock)

Under no profit sharing
(i.e. common stock)

Alice gets back $\$ 220$

Actually, under 50-50
Alice and Bob often find it optimal to invest more

Bob gets back more than $\$ 110$ Alice often gets back more than $\$ 220$

Theorem 1. When n investors each with risk-aversion ρ_{i} and receiving a_{i} of the profit, iff the pre-agreed profit ratio is proportional to risk tolerance, i.e. $a_{i}=\frac{1 / \rho_{i}}{\sum_{i=1}^{n} 1 / \rho_{i}}$, a Nash equilibrium exists, under which each investor's payoff equals to that as if they can all freely communicate.

Implications: security design for investment crowdfunding, ICO/DAO, structuring of VC/PE partnerships

